Filtered by CWE-416
Total 6905 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-53432 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: firewire: net: fix use after free in fwnet_finish_incoming_packet() The netif_rx() function frees the skb so we can't dereference it to save the skb->len.
CVE-2023-53427 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix warning and UAF when destroy the MR list If the MR allocate failed, the MR recovery work not initialized and list not cleared. Then will be warning and UAF when release the MR: WARNING: CPU: 4 PID: 824 at kernel/workqueue.c:3066 __flush_work.isra.0+0xf7/0x110 CPU: 4 PID: 824 Comm: mount.cifs Not tainted 6.1.0-rc5+ #82 RIP: 0010:__flush_work.isra.0+0xf7/0x110 Call Trace: <TASK> __cancel_work_timer+0x2ba/0x2e0 smbd_destroy+0x4e1/0x990 _smbd_get_connection+0x1cbd/0x2110 smbd_get_connection+0x21/0x40 cifs_get_tcp_session+0x8ef/0xda0 mount_get_conns+0x60/0x750 cifs_mount+0x103/0xd00 cifs_smb3_do_mount+0x1dd/0xcb0 smb3_get_tree+0x1d5/0x300 vfs_get_tree+0x41/0xf0 path_mount+0x9b3/0xdd0 __x64_sys_mount+0x190/0x1d0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 BUG: KASAN: use-after-free in smbd_destroy+0x4fc/0x990 Read of size 8 at addr ffff88810b156a08 by task mount.cifs/824 CPU: 4 PID: 824 Comm: mount.cifs Tainted: G W 6.1.0-rc5+ #82 Call Trace: dump_stack_lvl+0x34/0x44 print_report+0x171/0x472 kasan_report+0xad/0x130 smbd_destroy+0x4fc/0x990 _smbd_get_connection+0x1cbd/0x2110 smbd_get_connection+0x21/0x40 cifs_get_tcp_session+0x8ef/0xda0 mount_get_conns+0x60/0x750 cifs_mount+0x103/0xd00 cifs_smb3_do_mount+0x1dd/0xcb0 smb3_get_tree+0x1d5/0x300 vfs_get_tree+0x41/0xf0 path_mount+0x9b3/0xdd0 __x64_sys_mount+0x190/0x1d0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Allocated by task 824: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0x7a/0x90 _smbd_get_connection+0x1b6f/0x2110 smbd_get_connection+0x21/0x40 cifs_get_tcp_session+0x8ef/0xda0 mount_get_conns+0x60/0x750 cifs_mount+0x103/0xd00 cifs_smb3_do_mount+0x1dd/0xcb0 smb3_get_tree+0x1d5/0x300 vfs_get_tree+0x41/0xf0 path_mount+0x9b3/0xdd0 __x64_sys_mount+0x190/0x1d0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Freed by task 824: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x40 ____kasan_slab_free+0x143/0x1b0 __kmem_cache_free+0xc8/0x330 _smbd_get_connection+0x1c6a/0x2110 smbd_get_connection+0x21/0x40 cifs_get_tcp_session+0x8ef/0xda0 mount_get_conns+0x60/0x750 cifs_mount+0x103/0xd00 cifs_smb3_do_mount+0x1dd/0xcb0 smb3_get_tree+0x1d5/0x300 vfs_get_tree+0x41/0xf0 path_mount+0x9b3/0xdd0 __x64_sys_mount+0x190/0x1d0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Let's initialize the MR recovery work before MR allocate to prevent the warning, remove the MRs from the list to prevent the UAF.
CVE-2023-53426 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: xsk: Fix xsk_diag use-after-free error during socket cleanup Fix a use-after-free error that is possible if the xsk_diag interface is used after the socket has been unbound from the device. This can happen either due to the socket being closed or the device disappearing. In the early days of AF_XDP, the way we tested that a socket was not bound to a device was to simply check if the netdevice pointer in the xsk socket structure was NULL. Later, a better system was introduced by having an explicit state variable in the xsk socket struct. For example, the state of a socket that is on the way to being closed and has been unbound from the device is XSK_UNBOUND. The commit in the Fixes tag below deleted the old way of signalling that a socket is unbound, setting dev to NULL. This in the belief that all code using the old way had been exterminated. That was unfortunately not true as the xsk diagnostics code was still using the old way and thus does not work as intended when a socket is going down. Fix this by introducing a test against the state variable. If the socket is in the state XSK_UNBOUND, simply abort the diagnostic's netlink operation.
CVE-2022-50417 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/panfrost: Fix GEM handle creation ref-counting panfrost_gem_create_with_handle() previously returned a BO but with the only reference being from the handle, which user space could in theory guess and release, causing a use-after-free. Additionally if the call to panfrost_gem_mapping_get() in panfrost_ioctl_create_bo() failed then a(nother) reference on the BO was dropped. The _create_with_handle() is a problematic pattern, so ditch it and instead create the handle in panfrost_ioctl_create_bo(). If the call to panfrost_gem_mapping_get() fails then this means that user space has indeed gone behind our back and freed the handle. In which case just return an error code.
CVE-2022-50413 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix use-after-free We've already freed the assoc_data at this point, so need to use another copy of the AP (MLD) address instead.
CVE-2022-50411 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ACPICA: Fix error code path in acpi_ds_call_control_method() A use-after-free in acpi_ps_parse_aml() after a failing invocaion of acpi_ds_call_control_method() is reported by KASAN [1] and code inspection reveals that next_walk_state pushed to the thread by acpi_ds_create_walk_state() is freed on errors, but it is not popped from the thread beforehand. Thus acpi_ds_get_current_walk_state() called by acpi_ps_parse_aml() subsequently returns it as the new walk state which is incorrect. To address this, make acpi_ds_call_control_method() call acpi_ds_pop_walk_state() to pop next_walk_state from the thread before returning an error.
CVE-2022-50408 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix use-after-free bug in brcmf_netdev_start_xmit() > ret = brcmf_proto_tx_queue_data(drvr, ifp->ifidx, skb); may be schedule, and then complete before the line > ndev->stats.tx_bytes += skb->len; [ 46.912801] ================================================================== [ 46.920552] BUG: KASAN: use-after-free in brcmf_netdev_start_xmit+0x718/0x8c8 [brcmfmac] [ 46.928673] Read of size 4 at addr ffffff803f5882e8 by task systemd-resolve/328 [ 46.935991] [ 46.937514] CPU: 1 PID: 328 Comm: systemd-resolve Tainted: G O 5.4.199-[REDACTED] #1 [ 46.947255] Hardware name: [REDACTED] [ 46.954568] Call trace: [ 46.957037] dump_backtrace+0x0/0x2b8 [ 46.960719] show_stack+0x24/0x30 [ 46.964052] dump_stack+0x128/0x194 [ 46.967557] print_address_description.isra.0+0x64/0x380 [ 46.972877] __kasan_report+0x1d4/0x240 [ 46.976723] kasan_report+0xc/0x18 [ 46.980138] __asan_report_load4_noabort+0x18/0x20 [ 46.985027] brcmf_netdev_start_xmit+0x718/0x8c8 [brcmfmac] [ 46.990613] dev_hard_start_xmit+0x1bc/0xda0 [ 46.994894] sch_direct_xmit+0x198/0xd08 [ 46.998827] __qdisc_run+0x37c/0x1dc0 [ 47.002500] __dev_queue_xmit+0x1528/0x21f8 [ 47.006692] dev_queue_xmit+0x24/0x30 [ 47.010366] neigh_resolve_output+0x37c/0x678 [ 47.014734] ip_finish_output2+0x598/0x2458 [ 47.018927] __ip_finish_output+0x300/0x730 [ 47.023118] ip_output+0x2e0/0x430 [ 47.026530] ip_local_out+0x90/0x140 [ 47.030117] igmpv3_sendpack+0x14c/0x228 [ 47.034049] igmpv3_send_cr+0x384/0x6b8 [ 47.037895] igmp_ifc_timer_expire+0x4c/0x118 [ 47.042262] call_timer_fn+0x1cc/0xbe8 [ 47.046021] __run_timers+0x4d8/0xb28 [ 47.049693] run_timer_softirq+0x24/0x40 [ 47.053626] __do_softirq+0x2c0/0x117c [ 47.057387] irq_exit+0x2dc/0x388 [ 47.060715] __handle_domain_irq+0xb4/0x158 [ 47.064908] gic_handle_irq+0x58/0xb0 [ 47.068581] el0_irq_naked+0x50/0x5c [ 47.072162] [ 47.073665] Allocated by task 328: [ 47.077083] save_stack+0x24/0xb0 [ 47.080410] __kasan_kmalloc.isra.0+0xc0/0xe0 [ 47.084776] kasan_slab_alloc+0x14/0x20 [ 47.088622] kmem_cache_alloc+0x15c/0x468 [ 47.092643] __alloc_skb+0xa4/0x498 [ 47.096142] igmpv3_newpack+0x158/0xd78 [ 47.099987] add_grhead+0x210/0x288 [ 47.103485] add_grec+0x6b0/0xb70 [ 47.106811] igmpv3_send_cr+0x2e0/0x6b8 [ 47.110657] igmp_ifc_timer_expire+0x4c/0x118 [ 47.115027] call_timer_fn+0x1cc/0xbe8 [ 47.118785] __run_timers+0x4d8/0xb28 [ 47.122457] run_timer_softirq+0x24/0x40 [ 47.126389] __do_softirq+0x2c0/0x117c [ 47.130142] [ 47.131643] Freed by task 180: [ 47.134712] save_stack+0x24/0xb0 [ 47.138041] __kasan_slab_free+0x108/0x180 [ 47.142146] kasan_slab_free+0x10/0x18 [ 47.145904] slab_free_freelist_hook+0xa4/0x1b0 [ 47.150444] kmem_cache_free+0x8c/0x528 [ 47.154292] kfree_skbmem+0x94/0x108 [ 47.157880] consume_skb+0x10c/0x5a8 [ 47.161466] __dev_kfree_skb_any+0x88/0xa0 [ 47.165598] brcmu_pkt_buf_free_skb+0x44/0x68 [brcmutil] [ 47.171023] brcmf_txfinalize+0xec/0x190 [brcmfmac] [ 47.176016] brcmf_proto_bcdc_txcomplete+0x1c0/0x210 [brcmfmac] [ 47.182056] brcmf_sdio_sendfromq+0x8dc/0x1e80 [brcmfmac] [ 47.187568] brcmf_sdio_dpc+0xb48/0x2108 [brcmfmac] [ 47.192529] brcmf_sdio_dataworker+0xc8/0x238 [brcmfmac] [ 47.197859] process_one_work+0x7fc/0x1a80 [ 47.201965] worker_thread+0x31c/0xc40 [ 47.205726] kthread+0x2d8/0x370 [ 47.208967] ret_from_fork+0x10/0x18 [ 47.212546] [ 47.214051] The buggy address belongs to the object at ffffff803f588280 [ 47.214051] which belongs to the cache skbuff_head_cache of size 208 [ 47.227086] The buggy address is located 104 bytes inside of [ 47.227086] 208-byte region [ffffff803f588280, ffffff803f588350) [ 47.238814] The buggy address belongs to the page: [ 47.243618] page:ffffffff00dd6200 refcount:1 mapcou ---truncated---
CVE-2019-1429 1 Microsoft 14 Internet Explorer, Windows 10 1507, Windows 10 1607 and 11 more 2026-01-14 7.5 High
A remote code execution vulnerability exists in the way that the scripting engine handles objects in memory in Internet Explorer, aka 'Scripting Engine Memory Corruption Vulnerability'. This CVE ID is unique from CVE-2019-1426, CVE-2019-1427, CVE-2019-1428.
CVE-2023-53398 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mlx5: fix possible ptp queue fifo use-after-free Fifo indexes are not checked during pop operations and it leads to potential use-after-free when poping from empty queue. Such case was possible during re-sync action. WARN_ON_ONCE covers future cases. There were out-of-order cqe spotted which lead to drain of the queue and use-after-free because of lack of fifo pointers check. Special check and counter are added to avoid resync operation if SKB could not exist in the fifo because of OOO cqe (skb_id must be between consumer and producer index).
CVE-2023-53388 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Clean dangling pointer on bind error path mtk_drm_bind() can fail, in which case drm_dev_put() is called, destroying the drm_device object. However a pointer to it was still being held in the private object, and that pointer would be passed along to DRM in mtk_drm_sys_prepare() if a suspend were triggered at that point, resulting in a panic. Clean the pointer when destroying the object in the error path to prevent this from happening.
CVE-2023-53386 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix potential use-after-free when clear keys Similar to commit c5d2b6fa26b5 ("Bluetooth: Fix use-after-free in hci_remove_ltk/hci_remove_irk"). We can not access k after kfree_rcu() call.
CVE-2023-53377 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: cifs: prevent use-after-free by freeing the cfile later In smb2_compound_op we have a possible use-after-free which can cause hard to debug problems later on. This was revealed during stress testing with KASAN enabled kernel. Fixing it by moving the cfile free call to a few lines below, after the usage.
CVE-2023-53374 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_conn: fail SCO/ISO via hci_conn_failed if ACL gone early Not calling hci_(dis)connect_cfm before deleting conn referred to by a socket generally results to use-after-free. When cleaning up SCO connections when the parent ACL is deleted too early, use hci_conn_failed to do the connection cleanup properly. We also need to clean up ISO connections in a similar situation when connecting has started but LE Create CIS is not yet sent, so do it too here.
CVE-2023-53373 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: crypto: seqiv - Handle EBUSY correctly As it is seqiv only handles the special return value of EINPROGERSS, which means that in all other cases it will free data related to the request. However, as the caller of seqiv may specify MAY_BACKLOG, we also need to expect EBUSY and treat it in the same way. Otherwise backlogged requests will trigger a use-after-free.
CVE-2023-53363 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: PCI: Fix use-after-free in pci_bus_release_domain_nr() Commit c14f7ccc9f5d ("PCI: Assign PCI domain IDs by ida_alloc()") introduced a use-after-free bug in the bus removal cleanup. The issue was found with kfence: [ 19.293351] BUG: KFENCE: use-after-free read in pci_bus_release_domain_nr+0x10/0x70 [ 19.302817] Use-after-free read at 0x000000007f3b80eb (in kfence-#115): [ 19.309677] pci_bus_release_domain_nr+0x10/0x70 [ 19.309691] dw_pcie_host_deinit+0x28/0x78 [ 19.309702] tegra_pcie_deinit_controller+0x1c/0x38 [pcie_tegra194] [ 19.309734] tegra_pcie_dw_probe+0x648/0xb28 [pcie_tegra194] [ 19.309752] platform_probe+0x90/0xd8 ... [ 19.311457] kfence-#115: 0x00000000063a155a-0x00000000ba698da8, size=1072, cache=kmalloc-2k [ 19.311469] allocated by task 96 on cpu 10 at 19.279323s: [ 19.311562] __kmem_cache_alloc_node+0x260/0x278 [ 19.311571] kmalloc_trace+0x24/0x30 [ 19.311580] pci_alloc_bus+0x24/0xa0 [ 19.311590] pci_register_host_bridge+0x48/0x4b8 [ 19.311601] pci_scan_root_bus_bridge+0xc0/0xe8 [ 19.311613] pci_host_probe+0x18/0xc0 [ 19.311623] dw_pcie_host_init+0x2c0/0x568 [ 19.311630] tegra_pcie_dw_probe+0x610/0xb28 [pcie_tegra194] [ 19.311647] platform_probe+0x90/0xd8 ... [ 19.311782] freed by task 96 on cpu 10 at 19.285833s: [ 19.311799] release_pcibus_dev+0x30/0x40 [ 19.311808] device_release+0x30/0x90 [ 19.311814] kobject_put+0xa8/0x120 [ 19.311832] device_unregister+0x20/0x30 [ 19.311839] pci_remove_bus+0x78/0x88 [ 19.311850] pci_remove_root_bus+0x5c/0x98 [ 19.311860] dw_pcie_host_deinit+0x28/0x78 [ 19.311866] tegra_pcie_deinit_controller+0x1c/0x38 [pcie_tegra194] [ 19.311883] tegra_pcie_dw_probe+0x648/0xb28 [pcie_tegra194] [ 19.311900] platform_probe+0x90/0xd8 ... [ 19.313579] CPU: 10 PID: 96 Comm: kworker/u24:2 Not tainted 6.2.0 #4 [ 19.320171] Hardware name: /, BIOS 1.0-d7fb19b 08/10/2022 [ 19.325852] Workqueue: events_unbound deferred_probe_work_func The stack trace is a bit misleading as dw_pcie_host_deinit() doesn't directly call pci_bus_release_domain_nr(). The issue turns out to be in pci_remove_root_bus() which first calls pci_remove_bus() which frees the struct pci_bus when its struct device is released. Then pci_bus_release_domain_nr() is called and accesses the freed struct pci_bus. Reordering these fixes the issue.
CVE-2023-53358 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix racy issue under cocurrent smb2 tree disconnect There is UAF issue under cocurrent smb2 tree disconnect. This patch introduce TREE_CONN_EXPIRE flags for tcon to avoid cocurrent access.
CVE-2023-53338 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: lwt: Fix return values of BPF xmit ops BPF encap ops can return different types of positive values, such like NET_RX_DROP, NET_XMIT_CN, NETDEV_TX_BUSY, and so on, from function skb_do_redirect and bpf_lwt_xmit_reroute. At the xmit hook, such return values would be treated implicitly as LWTUNNEL_XMIT_CONTINUE in ip(6)_finish_output2. When this happens, skbs that have been freed would continue to the neighbor subsystem, causing use-after-free bug and kernel crashes. To fix the incorrect behavior, skb_do_redirect return values can be simply discarded, the same as tc-egress behavior. On the other hand, bpf_lwt_xmit_reroute returns useful errors to local senders, e.g. PMTU information. Thus convert its return values to avoid the conflict with LWTUNNEL_XMIT_CONTINUE.
CVE-2023-53322 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Wait for io return on terminate rport System crash due to use after free. Current code allows terminate_rport_io to exit before making sure all IOs has returned. For FCP-2 device, IO's can hang on in HW because driver has not tear down the session in FW at first sign of cable pull. When dev_loss_tmo timer pops, terminate_rport_io is called and upper layer is about to free various resources. Terminate_rport_io trigger qla to do the final cleanup, but the cleanup might not be fast enough where it leave qla still holding on to the same resource. Wait for IO's to return to upper layer before resources are freed.
CVE-2023-53316 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dp: Free resources after unregistering them The DP component's unbind operation walks through the submodules to unregister and clean things up. But if the unbind happens because the DP controller itself is being removed, all the memory for those submodules has just been freed. Change the order of these operations to avoid the many use-after-free that otherwise happens in this code path. Patchwork: https://patchwork.freedesktop.org/patch/542166/
CVE-2023-53311 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix use-after-free of nilfs_root in dirtying inodes via iput During unmount process of nilfs2, nothing holds nilfs_root structure after nilfs2 detaches its writer in nilfs_detach_log_writer(). Previously, nilfs_evict_inode() could cause use-after-free read for nilfs_root if inodes are left in "garbage_list" and released by nilfs_dispose_list at the end of nilfs_detach_log_writer(), and this bug was fixed by commit 9b5a04ac3ad9 ("nilfs2: fix use-after-free bug of nilfs_root in nilfs_evict_inode()"). However, it turned out that there is another possibility of UAF in the call path where mark_inode_dirty_sync() is called from iput(): nilfs_detach_log_writer() nilfs_dispose_list() iput() mark_inode_dirty_sync() __mark_inode_dirty() nilfs_dirty_inode() __nilfs_mark_inode_dirty() nilfs_load_inode_block() --> causes UAF of nilfs_root struct This can happen after commit 0ae45f63d4ef ("vfs: add support for a lazytime mount option"), which changed iput() to call mark_inode_dirty_sync() on its final reference if i_state has I_DIRTY_TIME flag and i_nlink is non-zero. This issue appears after commit 28a65b49eb53 ("nilfs2: do not write dirty data after degenerating to read-only") when using the syzbot reproducer, but the issue has potentially existed before. Fix this issue by adding a "purging flag" to the nilfs structure, setting that flag while disposing the "garbage_list" and checking it in __nilfs_mark_inode_dirty(). Unlike commit 9b5a04ac3ad9 ("nilfs2: fix use-after-free bug of nilfs_root in nilfs_evict_inode()"), this patch does not rely on ns_writer to determine whether to skip operations, so as not to break recovery on mount. The nilfs_salvage_orphan_logs routine dirties the buffer of salvaged data before attaching the log writer, so changing __nilfs_mark_inode_dirty() to skip the operation when ns_writer is NULL will cause recovery write to fail. The purpose of using the cleanup-only flag is to allow for narrowing of such conditions.