Filtered by vendor Adobe
Subscriptions
Filtered by product Acrobat
Subscriptions
Total
1354 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2017-11268 | 3 Adobe, Apple, Microsoft | 7 Acrobat, Acrobat Dc, Acrobat Reader and 4 more | 2025-04-20 | N/A |
| Adobe Acrobat Reader 2017.009.20058 and earlier, 2017.008.30051 and earlier, 2015.006.30306 and earlier, and 11.0.20 and earlier has an exploitable memory corruption vulnerability in the image conversion engine when processing Enhanced Metafile Format (EMF) private JPEG data. Successful exploitation could lead to arbitrary code execution. | ||||
| CVE-2017-3021 | 3 Adobe, Apple, Microsoft | 6 Acrobat, Acrobat Dc, Acrobat Reader Dc and 3 more | 2025-04-20 | N/A |
| Adobe Acrobat Reader versions 11.0.19 and earlier, 15.006.30280 and earlier, 15.023.20070 and earlier have a memory address leak vulnerability in the JPEG 2000 parser engine. | ||||
| CVE-2017-16401 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | N/A |
| An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is part of an image conversion, specifically in Enhanced Metafile Format Plus (EMF +) processing modules. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. | ||||
| CVE-2017-16386 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | N/A |
| An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is part of the XPS2PDF conversion engine. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. | ||||
| CVE-2017-11271 | 3 Adobe, Apple, Microsoft | 7 Acrobat, Acrobat Dc, Acrobat Reader and 4 more | 2025-04-20 | N/A |
| Adobe Acrobat Reader 2017.009.20058 and earlier, 2017.008.30051 and earlier, 2015.006.30306 and earlier, and 11.0.20 and earlier has an exploitable memory corruption vulnerability in the image conversion engine when processing Enhanced Metafile Format (EMF) data related to transfer of pixel blocks. Successful exploitation could lead to arbitrary code execution. | ||||
| CVE-2017-3121 | 3 Adobe, Apple, Microsoft | 6 Acrobat, Acrobat Dc, Acrobat Reader Dc and 3 more | 2025-04-20 | N/A |
| Adobe Acrobat Reader 2017.009.20058 and earlier, 2017.008.30051 and earlier, 2015.006.30306 and earlier, and 11.0.20 and earlier has an exploitable memory corruption vulnerability in the Enhanced Metafile Format (EMF) parser. Successful exploitation could lead to arbitrary code execution. | ||||
| CVE-2017-16403 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | N/A |
| An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is part of the image conversion module that processes Enhanced Metafile Format Plus (EMF+) data. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. | ||||
| CVE-2017-16408 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | N/A |
| An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is a part of the WebCapture module. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. | ||||
| CVE-2017-16395 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | N/A |
| An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. The vulnerability is caused by a buffer access with an incorrect length value in the image conversion module when processing Enhanced Metafile Format (EMF). Crafted EMF input (EMR_STRETCHDIBITS) causes a mismatch between allocated buffer size and the access allowed by the computation. If an attacker can adequately control the accessible memory then this vulnerability can be leveraged to achieve arbitrary code execution. | ||||
| CVE-2017-11234 | 3 Adobe, Apple, Microsoft | 7 Acrobat, Acrobat Dc, Acrobat Reader and 4 more | 2025-04-20 | N/A |
| Adobe Acrobat Reader 2017.009.20058 and earlier, 2017.008.30051 and earlier, 2015.006.30306 and earlier, and 11.0.20 and earlier has an exploitable memory corruption vulnerability in the image conversion engine when processing TIFF data related to the way how the components of each pixel are stored. Successful exploitation could lead to arbitrary code execution. | ||||
| CVE-2017-16397 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | N/A |
| An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is a part of Enhanced Metafile Format (EMF) processing within the image conversion module. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. | ||||
| CVE-2017-16367 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | N/A |
| An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability is an instance of a type confusion overflow vulnerability. The vulnerability leads to an out of bounds memory access. Attackers can exploit the vulnerability by using the out of bounds access for unintended reads or writes -- potentially leading to code corruption, control-flow hijack, or an information leak attack. | ||||
| CVE-2017-11227 | 3 Adobe, Apple, Microsoft | 7 Acrobat, Acrobat Dc, Acrobat Reader and 4 more | 2025-04-20 | N/A |
| Adobe Acrobat Reader 2017.009.20058 and earlier, 2017.008.30051 and earlier, 2015.006.30306 and earlier, and 11.0.20 and earlier has an exploitable memory corruption vulnerability in the image conversion engine when processing Enhanced Metafile Format (EMF) private data. Successful exploitation could lead to arbitrary code execution. | ||||
| CVE-2017-16393 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | N/A |
| An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability is an instance of a use after free vulnerability in the JavaScript engine. The mismatch between an old and a new object can provide an attacker with unintended memory access -- potentially leading to code corruption, control-flow hijack, or an information leak attack. Successful exploitation could lead to arbitrary code execution. | ||||
| CVE-2017-16399 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | N/A |
| An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This issue is due to an untrusted pointer dereference in the XPS parsing module. In this scenario, the input is crafted in a way that the computation results in pointers to memory locations that do not belong to the relevant process address space. The dereferencing operation is a read operation, and an attack can result in sensitive data exposure. | ||||
| CVE-2017-16409 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | N/A |
| An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is part of the Adobe graphics module responsible for displaying textual data. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. | ||||
| CVE-2017-16387 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | N/A |
| An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is part of the JPEG2000 codec. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. | ||||
| CVE-2017-11226 | 3 Adobe, Apple, Microsoft | 7 Acrobat, Acrobat Dc, Acrobat Reader and 4 more | 2025-04-20 | N/A |
| Adobe Acrobat Reader 2017.009.20058 and earlier, 2017.008.30051 and earlier, 2015.006.30306 and earlier, and 11.0.20 and earlier has an exploitable memory corruption vulnerability in the image processing engine when processing JPEG 2000 (JP2) code stream data. Successful exploitation could lead to arbitrary code execution. | ||||
| CVE-2017-16388 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | N/A |
| An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability is an instance of a use after free vulnerability in the JavaScript API engine. The mismatch between an old and a new object can provide an attacker with unintended memory access -- potentially leading to code corruption, control-flow hijack, or an information leak attack. Successful exploitation could lead to arbitrary code execution. | ||||
| CVE-2017-16366 | 1 Adobe | 4 Acrobat, Acrobat Dc, Acrobat Reader and 1 more | 2025-04-20 | N/A |
| An issue was discovered in Adobe Acrobat and Reader: 2017.012.20098 and earlier versions, 2017.011.30066 and earlier versions, 2015.006.30355 and earlier versions, and 11.0.22 and earlier versions. This vulnerability is an instance of a security bypass vulnerability in the AcroPDF plugin. | ||||