Filtered by vendor Nodejs
Subscriptions
Total
200 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2016-5180 | 6 C-ares, C-ares Project, Canonical and 3 more | 6 C-ares, C-ares, Ubuntu Linux and 3 more | 2025-04-12 | 9.8 Critical |
| Heap-based buffer overflow in the ares_create_query function in c-ares 1.x before 1.12.0 allows remote attackers to cause a denial of service (out-of-bounds write) or possibly execute arbitrary code via a hostname with an escaped trailing dot. | ||||
| CVE-2016-6303 | 2 Nodejs, Openssl | 2 Node.js, Openssl | 2025-04-12 | 9.8 Critical |
| Integer overflow in the MDC2_Update function in crypto/mdc2/mdc2dgst.c in OpenSSL before 1.1.0 allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors. | ||||
| CVE-2015-3193 | 3 Canonical, Nodejs, Openssl | 3 Ubuntu Linux, Node.js, Openssl | 2025-04-12 | 7.5 High |
| The Montgomery squaring implementation in crypto/bn/asm/x86_64-mont5.pl in OpenSSL 1.0.2 before 1.0.2e on the x86_64 platform, as used by the BN_mod_exp function, mishandles carry propagation and produces incorrect output, which makes it easier for remote attackers to obtain sensitive private-key information via an attack against use of a (1) Diffie-Hellman (DH) or (2) Diffie-Hellman Ephemeral (DHE) ciphersuite. | ||||
| CVE-2015-3194 | 5 Canonical, Debian, Nodejs and 2 more | 6 Ubuntu Linux, Debian Linux, Node.js and 3 more | 2025-04-12 | 7.5 High |
| crypto/rsa/rsa_ameth.c in OpenSSL 1.0.1 before 1.0.1q and 1.0.2 before 1.0.2e allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via an RSA PSS ASN.1 signature that lacks a mask generation function parameter. | ||||
| CVE-2016-6306 | 7 Canonical, Debian, Hp and 4 more | 11 Ubuntu Linux, Debian Linux, Icewall Federation Agent and 8 more | 2025-04-12 | 5.9 Medium |
| The certificate parser in OpenSSL before 1.0.1u and 1.0.2 before 1.0.2i might allow remote attackers to cause a denial of service (out-of-bounds read) via crafted certificate operations, related to s3_clnt.c and s3_srvr.c. | ||||
| CVE-2015-6764 | 4 Debian, Google, Nodejs and 1 more | 4 Debian Linux, Chrome, Node.js and 1 more | 2025-04-12 | 9.8 Critical |
| The BasicJsonStringifier::SerializeJSArray function in json-stringifier.h in the JSON stringifier in Google V8, as used in Google Chrome before 47.0.2526.73, improperly loads array elements, which allows remote attackers to cause a denial of service (out-of-bounds memory access) or possibly have unspecified other impact via crafted JavaScript code. | ||||
| CVE-2016-2183 | 6 Cisco, Nodejs, Openssl and 3 more | 14 Content Security Management Appliance, Node.js, Openssl and 11 more | 2025-04-12 | 7.5 High |
| The DES and Triple DES ciphers, as used in the TLS, SSH, and IPSec protocols and other protocols and products, have a birthday bound of approximately four billion blocks, which makes it easier for remote attackers to obtain cleartext data via a birthday attack against a long-duration encrypted session, as demonstrated by an HTTPS session using Triple DES in CBC mode, aka a "Sweet32" attack. | ||||
| CVE-2013-4450 | 2 Nodejs, Redhat | 2 Nodejs, Rhel Software Collections | 2025-04-11 | N/A |
| The HTTP server in Node.js 0.10.x before 0.10.21 and 0.8.x before 0.8.26 allows remote attackers to cause a denial of service (memory and CPU consumption) by sending a large number of pipelined requests without reading the response. | ||||
| CVE-2012-2330 | 1 Nodejs | 1 Nodejs | 2025-04-11 | N/A |
| The Update method in src/node_http_parser.cc in Node.js before 0.6.17 and 0.7 before 0.7.8 does not properly check the length of a string, which allows remote attackers to obtain sensitive information (request header contents) and possibly spoof HTTP headers via a zero length string. | ||||
| CVE-2013-2882 | 4 Debian, Google, Nodejs and 1 more | 6 Debian Linux, Chrome, Node.js and 3 more | 2025-04-11 | N/A |
| Google V8, as used in Google Chrome before 28.0.1500.95, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors that leverage "type confusion." | ||||
| CVE-2023-24807 | 2 Nodejs, Redhat | 3 Undici, Enterprise Linux, Rhel Eus | 2025-03-10 | 7.5 High |
| Undici is an HTTP/1.1 client for Node.js. Prior to version 5.19.1, the `Headers.set()` and `Headers.append()` methods are vulnerable to Regular Expression Denial of Service (ReDoS) attacks when untrusted values are passed into the functions. This is due to the inefficient regular expression used to normalize the values in the `headerValueNormalize()` utility function. This vulnerability was patched in v5.19.1. No known workarounds are available. | ||||
| CVE-2023-23936 | 2 Nodejs, Redhat | 4 Node.js, Undici, Enterprise Linux and 1 more | 2025-03-10 | 6.5 Medium |
| Undici is an HTTP/1.1 client for Node.js. Starting with version 2.0.0 and prior to version 5.19.1, the undici library does not protect `host` HTTP header from CRLF injection vulnerabilities. This issue is patched in Undici v5.19.1. As a workaround, sanitize the `headers.host` string before passing to undici. | ||||
| CVE-2025-23088 | 1 Nodejs | 1 Node.js | 2025-03-01 | 8.8 High |
| This Record was REJECTED after determining it is not in compliance with CVE Program requirements regarding assignment for vulnerabilities | ||||
| CVE-2024-24758 | 1 Nodejs | 1 Undici | 2025-02-13 | 3.9 Low |
| Undici is an HTTP/1.1 client, written from scratch for Node.js. Undici already cleared Authorization headers on cross-origin redirects, but did not clear `Proxy-Authentication` headers. This issue has been patched in versions 5.28.3 and 6.6.1. Users are advised to upgrade. There are no known workarounds for this vulnerability. | ||||
| CVE-2024-24750 | 1 Nodejs | 1 Undici | 2025-02-13 | 6.5 Medium |
| Undici is an HTTP/1.1 client, written from scratch for Node.js. In affected versions calling `fetch(url)` and not consuming the incoming body ((or consuming it very slowing) will lead to a memory leak. This issue has been addressed in version 6.6.1. Users are advised to upgrade. Users unable to upgrade should make sure to always consume the incoming body. | ||||
| CVE-2023-45143 | 3 Fedoraproject, Nodejs, Redhat | 3 Fedora, Undici, Enterprise Linux | 2025-02-13 | 3.9 Low |
| Undici is an HTTP/1.1 client written from scratch for Node.js. Prior to version 5.26.2, Undici already cleared Authorization headers on cross-origin redirects, but did not clear `Cookie` headers. By design, `cookie` headers are forbidden request headers, disallowing them to be set in RequestInit.headers in browser environments. Since undici handles headers more liberally than the spec, there was a disconnect from the assumptions the spec made, and undici's implementation of fetch. As such this may lead to accidental leakage of cookie to a third-party site or a malicious attacker who can control the redirection target (ie. an open redirector) to leak the cookie to the third party site. This was patched in version 5.26.2. There are no known workarounds. | ||||
| CVE-2019-9515 | 12 Apache, Apple, Canonical and 9 more | 36 Traffic Server, Mac Os X, Swiftnio and 33 more | 2025-01-14 | 7.5 High |
| Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | ||||
| CVE-2019-9511 | 12 Apache, Apple, Canonical and 9 more | 29 Traffic Server, Mac Os X, Swiftnio and 26 more | 2025-01-14 | 7.5 High |
| Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | ||||
| CVE-2019-9514 | 13 Apache, Apple, Canonical and 10 more | 44 Traffic Server, Mac Os X, Swiftnio and 41 more | 2025-01-14 | 7.5 High |
| Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both. | ||||
| CVE-2019-9518 | 11 Apache, Apple, Canonical and 8 more | 26 Traffic Server, Mac Os X, Swiftnio and 23 more | 2025-01-14 | 7.5 High |
| Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU. | ||||